本文共 4872 字,大约阅读时间需要 16 分钟。
二叉搜索树是常见的数据结构,主要用于快速查找数据。以下是对二叉搜索树操作集的实现,包括插入、删除、查找、找最小值和找最大值的函数。
typedef struct TNode *Position;typedef Position BinTree;struct TNode { ElementType Data; BinTree Left; BinTree Right;}; 插入函数将一个元素插入二叉搜索树中,并返回根节点指针。
BinTree Insert(BinTree BST, ElementType X) { if (!BST) { BST = (BinTree)malloc(sizeof(struct TNode)); BST->Data = X; BST->Left = NULL; BST->Right = NULL; } else { if (X < BST->Data) { BST->Left = Insert(BST->Left, X); } else if (X > BST->Data) { BST->Right = Insert(BST->Right, X); } } return BST;} 删除函数将一个元素从二叉搜索树中删除,并返回根节点指针。如果元素不存在,输出“Not Found”并返回原树根节点。
BinTree Delete(BinTree BST, ElementType X) { Position Tmp; if (!BST) { printf("Not Found\n"); return BST; } else if (X < BST->Data) { BST->Left = Delete(BST->Left, X); } else if (X > BST->Data) { BST->Right = Delete(BST->Right, X); } else { if (BST->Left && BST->Right) { Tmp = FindMin(BST->Right); BST->Data = Tmp->Data; BST->Right = Delete(BST->Right, BST->Data); } else { Tmp = BST; if (!BST->Left) { BST = BST->Right; } else if (!BST->Right) { BST = BST->Left; } free(Tmp); } } return BST;} 查找函数返回目标值的节点指针,如果不存在则返回空指针。
Position Find(BinTree BST, ElementType X) { while (BST) { if (X > BST->Data) { BST = BST->Right; } else if (X < BST->Data) { BST = BST->Left; } else { return BST; } } return NULL;} 找最小值函数返回二叉搜索树中最小值的节点指针。
Position FindMin(BinTree BST) { while (BST) { if (!BST->Left) { return BST; } else { BST = BST->Left; } } return NULL;} 找最大值函数返回二叉搜索树中最大值的节点指针。
Position FindMax(BinTree BST) { while (BST) { if (!BST->Right) { return BST; } else { BST = BST->Right; } } return NULL;} #include#include typedef int ElementType;typedef struct TNode *Position;typedef Position BinTree;struct TNode { ElementType Data; BinTree Left; BinTree Right;};BinTree Insert(BinTree BST, ElementType X) { if (!BST) { BST = (BinTree)malloc(sizeof(struct TNode)); BST->Data = X; BST->Left = NULL; BST->Right = NULL; } else { if (X < BST->Data) { BST->Left = Insert(BST->Left, X); } else if (X > BST->Data) { BST->Right = Insert(BST->Right, X); } } return BST;}BinTree Delete(BinTree BST, ElementType X) { Position Tmp; if (!BST) { printf("Not Found\n"); return BST; } else if (X < BST->Data) { BST->Left = Delete(BST->Left, X); } else if (X > BST->Data) { BST->Right = Delete(BST->Right, X); } else { if (BST->Left && BST->Right) { Tmp = FindMin(BST->Right); BST->Data = Tmp->Data; BST->Right = Delete(BST->Right, BST->Data); } else { Tmp = BST; if (!BST->Left) { BST = BST->Right; } else if (!BST->Right) { BST = BST->Left; } free(Tmp); } } return BST;}Position Find(BinTree BST, ElementType X) { while (BST) { if (X > BST->Data) { BST = BST->Right; } else if (X < BST->Data) { BST = BST->Left; } else { return BST; } } return NULL;}Position FindMin(BinTree BST) { while (BST) { if (!BST->Left) { return BST; } else { BST = BST->Left; } } return NULL;}Position FindMax(BinTree BST) { while (BST) { if (!BST->Right) { return BST; } else { BST = BST->Right; } } return NULL;}int main() { BinTree BST, MinP, MaxP, Tmp; ElementType X; int N, i; BST = NULL; scanf("%d", &N); for (i = 0; i < N; i++) { scanf("%d", &X); BST = Insert(BST, X); } printf("preorder: "); preorderTraversal(BST); printf("\n"); MinP = FindMin(BST); MaxP = FindMax(BST); for (i = 0; i < N; i++) { X = ...; Tmp = Find(BST, X); if (Tmp == NULL) { printf("%d is not found\n", X); } else { if (Tmp == MinP) { printf("%d is the smallest key\n", Tmp->Data); } if (Tmp == MaxP) { printf("%d is the largest key\n", Tmp->Data); } } } scanf("%d", &N); for (i = 0; i < N; i++) { X = ...; Tmp = Insert(BST, X); ... } ...}
这些函数按照二叉搜索树的性质实现,确保插入、删除和查找的效率。
转载地址:http://gxhv.baihongyu.com/